现在的位置:主页 > 期刊导读 >

3D biofabrication of vascular networks for(12)

来源:现代制造技术与装备 【在线投稿】 栏目:期刊导读 时间:2020-10-28

【作者】网站采编

【关键词】

【摘要】[48],T.Smekal,,et al.,Fabrication of microfluidic devices in silicon and plastic using plasma etching, (2001)2846–2851. [49]Y.-K.Hsieh,S.-C.Chen,W.-L.Huang,et al.,Direct micromachining of microfluid

[48],T.Smekal,,et al.,Fabrication of microfluidic devices in silicon and plastic using plasma etching, (2001)2846–2851.

[49]Y.-K.Hsieh,S.-C.Chen,W.-L.Huang,et al.,Direct micromachining of microfluidic channels on biodegradable materials using laser ablation,Polymers 9(2017)242.

[50],N.Hao,E.K.O'shea,High-throughput microfluidics to control and measure signaling dynamics in single yeast cells,(2015)1181–1197.

[51]J.He,M.Mao,Y.Liu,et al.,Fabrication of nature‐inspired microfluidic network for perfusable tissue constructs,(2013)1108–1113.

[52]D.Lim,,B.Cho,et al.,Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,Lab Chip 3(2003)318–323.

[53]C.W.Peak,L.Cross,A.Singh,et al.,Microscale technologies for engineering complex tissue structures,in:Microscale Eng.,Springer,2016,pp.3–25.

[54],,R.Tran,et al.,Endothelialized microfluidics for studying microvascular interactions in hematologic diseases,(2012).

[55],E.Ostuni,P.LeDuc,et al.,Laminar flows:subcellular positioning of small molecules,Nature 411(2001)1016.

[56]H.Kaji,,R.Langer,et al.,Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions, 1810(2011)239–250.

[57]Y.Tardy,,T.Nagel,et al.,Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle,(1997)3102–3106.

[58]J.Shao,L.Wu,J.Wu,et al.,Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress,Lab Chip 9(2009)3118–3125.

[59]J.W.Song,W.Gu,N.Futai,et al.,Computer-controlled microcirculatory support system for endothelial cell culture and shearing,(2005)3993–3999.

[60],,,Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly,(2003)265–271.

[61]A.Chen,T.Pan,Three-dimensional fit-to- flow microfluidic assembly,Biomicrofluidics 5(2011).

[62]W.Wu,,,Omnidirectional printing of 3D microvascular networks,(2011)H178–H183.

[63]J.Huang,J.Kim,,et al.,Rapid fabrication of bio-inspired 3D microfluidic vascular networks,Networks (2009)3567–3571.

[64]C.-W.Tsao,Polymer microfluidics:simple,low-cost fabrication process bridging academic lab research to commercialized production,Micromachines 7(2016)225.

[65],,,et al.,Micro fluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients,Lab Chip 13(2013)3246–3252.

[66]S.Kim,H.Lee,M.Chung,et al.,Engineering of functional,perfusable 3D microvascular networks on a chip,Lab Chip 13(2013)1489–1500.

[67]Y.Shin,J.S.Jeon,S.Han,et al.,In vitro 3D collective sprouting angiogenesis under orchestrated ANG-1 and VEGF gradients,Lab Chip 11(2011)2175–2181.

[68],M.B.Chen,R.D.Kamm,Control of perfusable microvascular network morphology using a multiculture microfluidic system,Tissue Eng.Part C Methods 20(2014)543–552.

[69],,,et al.,The stabilization effect of mesenchymal stem cells on the formation of microvascular networks in a microfluidic device,(2013)114–128.

[70]B.S.Kim,,,et al.,Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices,(1998)46–54.

[71],,Effectiveness factor and diffusion limitations in collagen gel modules containing HepG2 cells,J.Tissue (2011)119–129.

[72]D.M.Dean,,,et al.,Rods,tori,and honeycombs:the directed self-assembly of microtissues with prescribed microscale geometries,FASEB J.21(2007)4005–4012.

[73]J.M.Kelm,V.Djonov,,et al.,Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units,Tissue Eng.12(2006)2151–2160.

[74]J.Yeh,Y.Ling,J.M.Karp,et al.,Micromolding of shape-controlled,harvestable cell-laden hydrogels,Biomaterials 27(2006)5391–5398.

[75],,Vascularized organoid engineered by modular assembly enables blood perfusion, 103(2006)–.

[76],,Fibronectin coating of collagen modules increases in vivo HUVEC survival and vessel formation in SCID mice,Acta (2011)1072–1083.

[77],R.Gupta,,Bone marrow-derived mesenchymal stromal cells enhance chimeric vessel development driven by endothelial cell-coated microtissues,Tissue Eng.Part A 18(2011)285–294.

[78],B.Leung,,Fabrication of cells containing gel modules to assemble modular tissue-engineered constructs,(2006)2963–2969.

[79]Y.Du,E.Lo,S.Ali,et al.,Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs, 105(2008)9522–9527.

[80],,Modular tissue engineering:engineering biological tissues from the bottom up,Soft Matter 5(2009)1312–1319.

[81]Y.Du,,H.Qi,et al.,Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels,(2011)1693–1703.

[82]W.He,Z.Ma,W.E.Teo,et al.,Tubular nanofiber scaffolds for tissue engineered small‐diameter vascular grafts, A 90(2009)205–216.

[83],X.H.Liu,,et al.,Nanostructured polymer scaffolds for tissue engineering and regenerative medicine,Wiley (2009)226–236.

文章来源:《现代制造技术与装备》 网址: http://www.xdzzjsyzb.cn/qikandaodu/2020/1028/666.html

上一篇:不锈钢复合板甲醇分离器制造
下一篇:探讨智能制造技术和智能化工厂

现代制造技术与装备投稿 | 现代制造技术与装备编辑部| 现代制造技术与装备版面费 | 现代制造技术与装备论文发表 | 现代制造技术与装备最新目录
Copyright © 2018 《现代制造技术与装备》杂志社 版权所有
投稿电话: 投稿邮箱: